Atin International Conference on Globalization University of Ostrava, September 16-17, 2009

Measuring Economic Globalization Entropy-Based Inequality Risk Metric

Theoretical Considerations
 Entropy-Based Interpretation of Risk
 Risk as a Governing Law of Globalization:
 The Central Theorem of Globalization
 Overall Governing Economic Rational:
 Maximizing Value Net of Risk

Practical Application

Measuring the Evolution of Globalization during 2003 to 2007 <u> Entropy-Based Interpretation of Risk</u> Introductory concepts

The 1st Principle of Thermodynamics: efficiency
 The 2nd Principle of Thermodynamics: irreversibility
 Concepts of entropy according to:

 Clausius (measure of thermal exchange)
 Soltantum (measure of disorder)
 Shannon (content of information) → H.Theil

Pareto rule, Lorenz curve, several indexes such as Gini, Herfindahl, Atkinson-Kolm-Sen, ...

Entropy-Based Interpretation of Risk Risk and Order

From the thermodynamic interpretation of entropy

Let us <u>define risk as a dualistic view of order</u> in an economic system

L...tineretore:

<u>the more order (or inequality)</u> → <u>the more risky the system (</u>less entropy)

Let us introduce Ψ_{XY} as a <u>measure of inequality</u> (or diversity) of an attribute of a subsystem XY (XNY) \in X compared to the system X

$$\psi_{XY} = \frac{p_{XY}}{p_X}$$

<u> Entropy-Based Interpretation of Risk</u> Equality as a natural Law

Let us define risk r_{xr} of a single element and its relative risk function as

$$r_{XY} = (\psi_{XY} - 1)^2 = \left(\frac{p_{XY}}{p_X} - 1\right)^2$$

4th Intl. *in*. Wall ge the vstate 10 fuequality

<u> Minimum Risk Principle:</u>

An economic system has the latent tendency to evolve into the state with more equality corresponding to a state with lower risk

<u> Entropy-Based Interpretation of Risk</u> Trade and inequality matrix

A supply/demand system for a product a can be described by the following <u>trade matrix</u> T^a

$$T^{\alpha} = \begin{bmatrix} t^{\alpha}_{AA} & t^{\alpha}_{AB} & \dots & t^{\alpha}_{AZ} \\ t^{\alpha}_{BA} & t^{\alpha}_{BB} & \dots & t^{\alpha}_{BZ} \\ \dots & \dots & \dots & \dots \\ t^{\alpha}_{ZA} & t^{\alpha}_{ZB} & \dots & t^{\alpha}_{ZZ} \end{bmatrix} = \begin{bmatrix} t^{\alpha}_{ZY} \end{bmatrix}$$

I the corresponding <u>inequality matrix</u> ^{yer} for the trade matrix T^{er} is

$$\boldsymbol{\psi}_{\infty}^{\alpha} = \begin{bmatrix} \boldsymbol{\psi}_{AA}^{\alpha} & \boldsymbol{\psi}_{AB}^{\alpha} & \dots & \boldsymbol{\psi}_{AZ}^{\alpha} \\ \boldsymbol{\psi}_{BA}^{\alpha} & \boldsymbol{\psi}_{BB}^{\alpha} & \dots & \boldsymbol{\psi}_{BZ}^{\alpha} \\ \dots & \dots & \dots & \dots \\ \boldsymbol{\psi}_{ZA}^{\alpha} & \boldsymbol{\psi}_{ZB}^{\alpha} & \dots & \boldsymbol{\psi}_{ZZ}^{\alpha} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\psi}_{XY}^{\alpha} \end{bmatrix}_{\infty}$$

$$\psi_{XY\infty}^{S\alpha} = \frac{p_{XY\infty}}{p_X} = \frac{t_{XY}^{\alpha}}{t_{X\bullet}^{\alpha}} = \frac{t_{XY} \cdot t_{\bullet\bullet}}{t_{X\bullet}^{\alpha}} = \frac{t_{XY} \cdot t_{\bullet\bullet}}{t_{\bullet Y} \cdot t_{X\bullet}}$$

where

4th Intl. Glob. Conference - Ostrava, Sept. 16-17, 2009

Entropy-Based Interpretation of Risk Defining Portfolio Risk

☐ The <u>inequality vector</u> Ψ_x of an economy X is

$$\psi_{X} = \left[\psi_{XA}, \psi_{XB}, \dots, \psi_{XZ}\right]$$

The corresponding risk r_k("P_{NY}) of the portfolio of activities of an economy X is

$$r(\psi_X^{\alpha}) = \frac{\sum_{y=A}^{Z} (\psi_{Xy}^{\alpha} - 1)^2}{card(Z)}$$

The risk $r(\Psi_X)$ of a portfolio Ψ_X of inequalities is the 2nd momentum of the elements belonging to the inequality vector Ψ_X relative to the attractor 1 where the value 1 means equality and card(Z) is the number of elements from A to Z of the row vector. Entropy-Based Interpretation of Risk

Risk of an economic system

Extending the concept of risk from an economy X to all economies corresponding to the whole trade matrix T^a

$$r(\psi_{\infty}^{\alpha}) = \frac{\sum_{x=A}^{Z} r(\psi_{x}^{\alpha})}{card(Z)} \quad \text{or} \quad \text{generalized} \\ r(\psi^{\alpha}) = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} (\psi_{ij}^{\alpha} - 1)^{2}}{m \cdot n}$$

■ i.e. the risk of the trade matrix is the average of all supplying economies' risk. extended to a supplier/customer system within an industry the risk is the 2nd momentum of all elements of the industry trade matrix Risk as a Governing Law of Globalization

The Central Theorem of Globalization

Based on the former findings we can enouncer

Central Theorem of Clobalization (CTC):

The lower the risk of an economy or the whole economic system, the more globalized the present economy or the whole economic system for the product under evaluation. Hence, a globalized economic system is less risky. Maximizing Value Net of Risk Overall governing economic rational

From the thermodynamic interpretation of free enthalpy:

■ Globalization means extending the business scope to new geographic areas, with the aim to
■ increase profit generation ⇒ maximizing profit
■ reduceing risk of the portfolio ⇒ minimizing risk

The Free Macroeconomic Profit Function is:

$$u_X^{\alpha} = y_X(C, p, C_M) - r(C, \rho, C_M) = u_X^{\alpha}(C, p, \rho, C_M)$$

Measuring Globalization during 2003-2007

Evolution of World Trade between 2003-2007

→ Is economy really globalizing (intended as interweavement)?

4th Intl. Glob. Conference - Ostrava, Sept. 16-17, 2009

Measuring Globalization during 2003-2007

World trade and inequality matrix in 2007

Network of world merchandise trade by region (source: WTO International Trade Statistics, Table A2)

	2007	North Am	SC Am	Europe	CIS	Africa	Middle E	Asia		
	t _{xy}	A	В	С	D	E	F	G	Supply	p _X
	А	951,18	130,65	328,74	12,42	27,27	50,08	352,12	1852,46	0,14
	В	151,30	122,04	105,64	6,44	13,68	9,10	80,23	488,43	0,04
	С	458,50	80,40	4243,56	189,05	147,71	152,92	433,67	5705,81	0,42
	D	23,56	6,28	287,45	103,20	6,87	16,24	59,62	503,22	0,04
	E	91,87	14,62	167,55	0,94	40,47	10,53	80,88	406,86	0,03
	F	83,93	4,36	108,30	4,76	27,53	93,37	397,30	719,55	0,05
	G	756,39	92,30	714,64	79,78	91,35	150,44	1889,82	3774,72	0,28
	Demand	2516,73	450,65	5955,88	396,59	354,88	482,68	3293,64	13451,05	1,00
	PY	0,19	0,03	0,44	0,03	0,03	0,04	0,24	1,00	
	p _{XY∞}	А	В	С	D	E	F	G		p _X
	А	0,38	0,29	0,06	0,03	0,08	0,10	0,11		0,14
	В	0,06	0,27	0,02	0,02	0,04	0,02	0,02		0,04
	С	0,18	0,18	0,71	0,48	0,42	0,32	0,13		0,42
	D	0,01	0,01	0,05	0,26	0,02	0,03	0,02		0,04
	E	0,04	0,03	0,03	0,00	0,11	0,02	0,02		0,03
	F	0,03	0,01	0,02	0,01	0,08	0,19	0,12		0,05
	G	0,30	0,20	0,12	0,20	0,26	0,31	0,57		0,28
		1,00	1,00	1,00	1,00	1,00	1,00	1,00		1,00
	Ψ_{XY}	A	В	C	D	E	F	G		r _x (Ψ _{XY})
	A	2,74	2,11	0,40	0,23	0,56	0,75	0,78		0,79
	В	1,66	7,46	0,49	0,45	1,06	0,52	0,67		6,15
	C	0,43	0,42	1,68	1,12	0,98	0,75	0,31		0,24
	D	0,25	0,37	1,29	6,96	0,52	0,90	0,48		5,29
	E	1,21	1,07	0,93	0,08	3,77	0,72	0,81		1,24
	F	0,62	0,18	0,34	0,22	1,45	3,62	2,25		1,50
	G	1,07	0,73	0,43	0,72	0,92	1,11	2,04		0,23
	- (11)	0.65	C 2 4	0.00	E 40	4 4 0	4.04	0.54	2.22	2,20
	r _Y (Ψ _{XY})	0,65	6,34	0,28	5,42	1,19	1,04	0,51	2,20	$r(\Psi_{XY})$
4th Intl. Glob. Conference – Ostrava, Sept. 16-17, 2009										Bruno G. Ruet

Measuring Globalization during 2003-2007 The economic system is globalizing

World Economic Globalization Degree $r(\Psi_{XY})$

Weasuring Globalization during 2003-2007

Evolution of supply (export) risk measures during 2003-2007 for macro-economic regions

4th Intl. Glob. Conference - Ostrava, Sept. 16-17, 2009

Weasuring Globalization during 2003-2007

Conclusions

World economic system is globalizing
 The inter-regional economic interveavement is increasing
 Different evolution in different economic regions
 Stagnant globalization in advanced economies
 Strong global expansion of emerging economies
 Asia has sur-passed Europe in 2007 as the most globalized export region

Interesting will be to see the evolution of globalization degree during the 2009 economic crisis

Modeling Economic Globalization

A Post-Neoclassic View on Foreign Trade and Competition

Modeling Economic Globalization

A Post-Neoclassic View on Foreign Trade and Competition

B www.intellight

4th Intl. Glob. Conference - Ostrava, Sept. 16-17, 2009